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Absfracf -A new algorithm for the analysis of finite three- 
dimensional symmetrical periodic structures by the Method 
of Lines (IVIoL) is presented and substantiated. It combines 
the numerical stable impedance transformation with the Elo. 
quet’s theorem. A numerically stable way of obtaining Flax- 
quet modes using open- or short-circuit matrix parameter de- 
scription of two-ports is proposed. To validate the described 
method, a microstrip meander line is designed, realized and 
measured. Comparison between measured and simulated re- 
suits is gtven. 

1. INTRODUCTION 

Periodic structures play an important role in many mi- 
crowave and optical devices. Examples are meander lines, 
Bragg gratings, bandgap structures, photonic crystals [l], 
dielectric antennas [2], magnetron resonators [3]. Meander 
lines (Fig. 1) are especially used for group delay equaliza- 
tion or BS delay elements. 

Fig. I: Microstrip meander line. 

Periodic structures can contain very high number of pe- 
riods (up to several thousand in optical devices). Analyz- 
ing such stmctures period by period e. g. with impedance 
transformation from tbe output to the input [4] is very time 
consuming and requires large memory capacity. It is there- 
fore limited to the structures with only several periods. 
Much better way of modeling of periodic structures is to 
use impedance transformation [4],[5] combined with Flo- 

quet’s theorem [6]. In this case, modes of one period (Flo- 
quet modes) must be obtain and then expand into tbe fields 
at the input and the output of the structure. This makes pos- 
sible to analyze finite periodic structures. A finite periodic 
structure can be considered as a finite homogenous waveg- 

uide and therefore concatenated with another waveguides at 
the begin and at the end of the structure. Such approach al- 
lows to significantly reduce computing time and memory 
space requirements. This concept has already been suc- 
cessfully used with the Method of Lines (MoL) for mod- 
eling of two-dimensional stmctures in optics [7]. However, 
at microwave frequencies, for 3-D structures with metal, 
the algorithm presented in [7] can not be applied. It is due 
to numerical problems and instability. Till now, using the 
MoL, only propagation constant of 3-D infinite periodic 
structures has been calculated 181, [9]. In this case peri- 
odic boundary conditions were used. The results presented 
in [8] are, in contrary to what was claimed by R. S. Chen et 
al [lo], correct. The only approximation which was made 
was due to discretizing the structure; the stop-band was cor- 
rectly obtained. 

In this paper, an alternative, very efficient and accurate al- 
gorithm for modeling of symmetrical 3-D structures is pro- 
posed. It combines the numerical stable impedance trans. 
formation [4],[5] with the Floquet’s theorem [IS]. The No- 
quet modes are determined in a numerical stable way, using 
open- or short-circuit matrix parameter description of two 
POtIS. 

Three-dimensional structures are discretized in two direc- 
tions perpendicular to the direction of propagation. In the 
direction of propagation an analytical solution is performed. 
For details containing the discrctization way see e. g. [ll]. 

Fig. 2 shows an example of 2-D circular periodic stmc- 
ture a magnetron resonator and the way of discretizing 
of such structures. 

Rg. 2: Cross-secaon of a magnetron resonator (left) and the way 
of discretization general circular ridge guides (right). ’ 

For the structures with big differences between the size of 
individual elements of the cross-section (e. g. for meander- 
line), the novel nonequidistant discretiaation [12] can be 

1967 

O-7803.7695.1/03/$17.00 0 2003 IEEE 2003 IEEE MIT-S Digest 



used. It enables to significantly reduce the number of lines 
needed for discretization with maintenance of second order 
accuracy of the discretization operators. 

To verify the proposed method of analysis, a microstip 
meander line was designed, realized and measured. Com- 
parison between the measured and the simulated results is 
given. The second analyzed structure is the magnetron rcs- 
on&or (Fig. 2) modeled by Raguin et al [3]. 

II. THEORY 

Since the general algorithm for analyzing of periodic 
structures can be found in [131, only the most imponant 
relations will be here presented. The main stress will be put 
on avoiding of numerical problems, which can arise in cae 
of 3-D structures with metal. 

To model a finite periodic stnxture we need a relation 
between the fields at the end and at the begin of one pe- 
riod. For a symmetrical period as shown in Fig. 3, the 
open-circuit impedance matrix-parameter description for a 
symmetrical two-port is given by 

[zj=[:: ::I[-$1 (I) 

Fig. 3: First periods of the analyzed meander line. 

and therefore the transfer matrix notation after transforma- 
tion to F’loquet-modes according to: 

EA,B = SE&B 
reads as 

HA,B = SF&B (2) 

x=(X,+I)(Xh-I)-l=(Xh-I)-l(Xh+I) (12) 

where 
A,, = s,-‘Z,-bZ& (13) 

The solution of this eigenvalue problem is numerical stable. 
This is the fundamental equation for determination of the 
Floquet modes. 

The equation of Floquet modes is defined by: 

Because, according to the Floquet’s theorem, each peri- 
odic structure can be described as a homogeneous waveg- 
uide, for a finite periodic stmctwe with N paicds, eq.(4) 
reads as (with NrF = IYNF) : 

coshrF -20 sinhrF k~ 
-90 sinh r~ I[- I coshrF HA (4) 
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Due td equivalence of (3) and (4), the following eigenvalue 
problems occm: 

The ports C and D are the input and output ports of the 
finite periodic structum. To these ports another structures 
or waveguides can be concatenated. To obtain scattering 
parameters of whole concatenated stmctwe, the impedance 
must be transformed from the output to the input. 

which results in: 

XE=XH=X=COshrF (6) 

Solving one of the eigenvalue problems of (5) is for 3- 
D structures with metal, due to numerical problems with 
inversion of the matrix zz (the matrix is badly scaled), not 
numerical stable. For this reason, we determine open and 
short circuit matrix parameters Q, and z,h of a half of one 
period. For a symmetrical period (Fig. 3) two excitation 
cases can be distinguished (I): 
1. Even case: EA = Ee, HA = -He -t magnetic wall 
can be put in the symmetry plane M 

EA = (21 + 22) HA --t Ze,, = 81 + zz = zet, (7) 

2. Odd case: EA = -EB, HA = Hg + electric wall can 
be put in the symmetry plane M 

EA = (21 - 22) HA - Z,,, = z, - z2 = z,h (8) 

The matrices z1 and z2 can be then obtained as follows: 

551 = 0.5 (Z,h + zdl) z* = 0.5 (Zeh - ml) (9) 

Using these relations leads to 

z;h = (qb& - I)-l(z;;zeh + I) (10) 

The eigenvalues can be then calculated from 

L-1 [ ED= I coshrNF -Z. sinh rNF 

HD -Yo sinh PNF Ii-1 EC (14) 
coshrNF Hc 



With &,D = %J& D the impedance can be transform 
throughout whole periodic structure by: 

where 

z, = z,/ tanh rFN Z2 = Z, / sinh rFFN (16) 

The relations between Floquet impedances (marked by a 
tilde) and mode impedances (overlined) are given by 

- 
Z,, = S$TEZDT$SH (17) 

By using the above developed impedance transfer formula 
we can calculate the input impedance of a concatenation 
structure starting at the end. In case of the analyzed me- 
ander line, to match the structure to 50 R impedance line, 
a half of period with different dimensions was added at the 
begin and at the end of the periodic structure. In this case, to 
obtain the total input impedance, the output impedance was 
transformed to the port D, then using (17) and (15) trans- 
formed in Floquet’s domain throughout the whole periodic 
structure to the port C and then again transformed to the 
very input of the structure. 

Having the input impedance we can easily calculate the 
reflection coefficient. At the input of tbe stmctwe we have 
a feeding waveguide. We assume that this waveguide has a 
characteristic impedance matrix zO. For the magnetic field 
at the input we then may write 

RI” = 2 (2% + Zo) -I Ei”f (18) 

where Einf is the vector of the propagating modes in for- 
ward direction. If we assume that in the input section only 
the fundamental mode with amplitude 1 is propagating in 
the forward direction, then i& is given by 

Zi”f = [l,O,...o]t (19) 
-- 

With (18) and 8, = Zi,Hi, we obtain 

Ei” = ZZ,.(Z. + zo)yEi”f (20) 

The vector Eii, contains the complex amplitude of the re- 
fleeted fundamental and all higher modes. The scattering 
coefficient column vector S11 is now given by 

%I = EC -Em 0.1) 

Repeating this calculation for the other modes in tbe input 
waveguide we can construct the generalized scattering ma- 
trix Sn. The reflection coefficient of the fundamental mode 
is given in the above vector Sll as first component. 

From the field at the input of the structure we can cal- 
culate the field in the whole structure using the derived 
impedance/admittance transfer equations and the forward 
and backward propagating field parts. The algorithm is sta- 
ble and high accurate. From the-fields at the end all other 
scattering parameters can be computed. 

III. RESULTS 

To validate the proposed algorithm, a meander line with 
23 periods has been fabricated, measured and compared 
with the calculated results. As a substrate RT/duroid 
6010LM microwave laminate was used, with Ed = 10.2 
and thickness h = 0.635mm. To match the input and out- 
put impedances of the meander line to the 5OQ line and to 
minimize insertion loss, the width of the both connecting 
lines wl and the tint and last distance between the strips 
dl were changed. The dimensions of the fabricated meat- 
der line are (see Fig. 3) 2u1 = 0.6 mm 2~2 = 0.4 mm w = 
0.4mm,dt =0.6mm,d=O.4mm,l=6.4mm. 

The structure was measured with a Hewlett Packard 
8720D network analyzer. Fig. 4 shows the measured scat- 
tering parameters against the results calculated with the pro- 
posed algorithm. As seen, the measured and the calculated 
results are in very good agreement. Because in the analysis, 
a lossless structwe was assumed, the transmission coeffi- 
cient $1 can be computed from the relation: 

s:, + s;, = 1 (29.) 

However, to check the accuracy of the algorithm, we have 
calculated S,, transforming the fields from the input to the 
output. The difference between the theoretical (22) and nu- 
merical results was approximately 10-14, what proofs the 
high accuracy of the proposed approach. 
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Fig, 4: Scattering parameters for the meander line. 

Also the measured and calculated phase of the whole pe- 
riodic structure are in very good agreement (Fig. 5). 
Second analyzed structure is the magnetron resonator [3] 
shown in Fig. 2. This resonator is designed to oper- 
ate in the fundamental n/a-mode around 38GHz, with 
N = 16 slots of depth 1.385mm, an anode radius of 
2.25 mm and the cathode radius of 1.3 mm. Fig. 6 shows 
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Fig. 5: Phase for the meander line. 

the resonant frequencies of the TEllo and TEtzo modes 
(1 = 0, 1,2, . ..N/Z) with axial open-boundary conditions. 
The results obtained by [3] and the MoL are in a very good 
SgWS”E”t. 
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Fig. 6: Dispersion diagram associated with TEuo and TElzo 
modes. 

IV. CONCLUSION 

An efficient and numerical stable algorithm for the anal- 
ysis of symmetrical periodic structures was proposed and 
substantiated. To analyze the finite periodic structure, Flo- 
quet modes for one period are determined and the formu’- 
las for concatenation of N periodic sections are given. An 
alternative, numerically stable way for obtaining Floquet 
modes, based on open- or short-circuit matrix parameter de- 
scription is proposed. 

To substantiate the proposed algorithm, two structures 

were analyzed. The first one, a meander line was fabricated 
and measured to compare calculated and measured results. 
The second structure is a magnetron cavity which disper- 
sion diagram was compared with the results published in 
the literature. 
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