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Abstract — A new algorithm for the analysis of finite three-
dimensional symmetrical periodic structures by the Method
of Lines (MoL) is presented and substantiated. It combines
the numerical stable impedance transformation with the Flo-
quet’s theorem. A numerically stable way of obtaining Flo-
quet modes using open- or short-circuit matrix parameter de-
scription of two-ports is proposed. To validate the described
method, a microstrip meander line is designed, realized and
measured. Comparison between measured and simulated re-
sults is given.

I. INTRODUCTION

Periodic structures play an important role in many mi-
crowave and optical devices. Examples are meander lines,
Bragg gratings, bandgap structures, photonic crystals [1],
dielectric antennas [2], magnetron resonators [3]. Meander
lines (Fig. 1) are especially used for group delay equaliza-
tion or as delay elements.

Fig. 1: Microstrip mcander line,

Periodic structures can contain very high number of pe-
riods (up to several thousand in optical devices). Analyz-
ing such structures period by period e. g. with impedance
transformation from the output to the input [4] is very time
consuming and requires large memory capacity. It is there-
fore limited to the structures with only several periods.
Much better way of modeling of periodic structures is to
use impedance transformation [4],[5] combined with Flo-
quet’s theorem [6]. In this case, modes of one period (Flo-
quet modes) must be obtain and then expand into the fields
at the input and the output of the structure. This makes pos-
sible to analyze finite periodic structures. A finite periodic
structure can be considered as a finite homogenous waveg-
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nide and therefore concatenated with another waveguides at
the begin and at the end of the structure. Such approach al-
lows to significantly reduce computing time and memory
space requirements. This concept has already been suc-
cessfully used with the Method of Lines (MoL) for mod-
eling of two-dimensional structures in optics [7]. However,
at microwave frequencies, for 3-D structures with metal,
the algorithm presented in [7] can not be applied. It is due
to numerical problems and instability. Till now, using the
MolL., only propagation constant of 3-D infinite periodic
structures has been calculated [8], [9]. In this case peri-
odic boundary conditions were used. The results presented
in [8] are, in contrary to what was claimed by R. S. Chen et
al [10], correct. The only approximation which was made
was due to discretizing the structure; the stop-band was cor-
rectly obtained.

In this paper, an alternative, very efficient and accurate al-
gorithm for modeling of symmetrical 3-D structures is pro-
posed. It combines the numerical stable impedance trans-
formation [41,[5] with the Floguet’s theorem [6]. The Flo-
quet modes are determined in a numerical stable way, using
open- or short-circuit matrix parameter description of two
ports.

Three-dimensional structures are discretized in two direc-
tions perpendicular to the direction of propagation. In the
direction of propagation an analytical solution is performed.
For details containing the discretization way seee. g. [11].

Fig. 2 shows an example of 2-D circular periodic struc-
ture - a magnetron resonator - and the way of discretizing
of such structures.
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Fig. 2: Cross-section of a magnetron resonator (left) and the way
of discretization general circular ridge guides (right). '

For the structures with big differences between the size of
individual elements of the cross-section (e. g. for meandes-
line), the novel nonequidistant discretization [12] can be
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used. It enables te significantly reduce the number of lines
needed for discretization with maintenance of second order
accuracy of the discretization operators.

To verify the proposed method of analysis, a microstrip
meander line was designed, realized and measured. Com-
parison between the measured and the simulated results is
given. The second analyzed structure is the magnetron res-
onator (Fig. 2) modeled by Raguin e al [3].

I1. THEORY

Since the general algorithm for analyzing of periodic
structures can be found in [13], only the most important
relations will be here presented. The main stress will be put
on avoiding of numerical problems, which can arise in case
of 3-D siructures with metal.

To model a finite periodic structure we need a relation
between the fields at the end and at the begin of one pe-
ricd. For a symmetrical peried as shown in Fig. 3, the
open-circuit impedance matrix-parameter description for a
symmetrical two-port is given by

Eal [z 2 |[ Ha '(1)
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Fig. 3: First periods of the apatyzed meander line.

and therefore the transfer matrix notation after transforma-
tion to Floquet-modes according to:

Eap = SEEA,B Hap = SyHap (2)
reads as )

{EB} _ [S;:_lzlzg_lSE —Sgl(zlzz_lzl—z?) SH][EA}G)

Hs| |-Si'z'Se —Si' 7 T2 Su || Hy

The equation of Floquet modes is defined by:

Eg

Hsz
Due t6 equivalence of (3) and (4), the following eigenvalue
problems occur:

—Zﬂ sinh FF
cosh T'p

_ coshI'p
—YO sinh FF

Hy
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7212;'Sg = Spde (5)

7288 = Suhm

which results in:
XE = )‘H =A= COShI‘F . (6)

Solving one of the eigenvalue problems of (5) is for 3—
D structures with metal, due to numerical problems with
inversion of the matrix z; (the matrix is badly scaled), not
numerical stable. For this reason, we determine open and
short circuit matrix parameters Zp, and z., of a half of one
period. For a symmetrical period (Fig. 3) two excitation
cases can be distinguished (1)

1. Even case: Ex = Eg, Ha = —Hg — magnetic wall
can be put in the symmetry plane M

Er=(z+22)Hs — Zeven =21+ 22 =2Zen,  (7)

2. Odd case: Ep = —Eg, Ha = Hg — electric wall can
be put in the symmetry plane M

Esa=(z1-2)Has — Zoga=21 ~22 =20 (8)
The matrices z; and z can be then obtained as follows:
21 = 0.5 (Zen + Zon) 22 =0.5(Zen — Zon) (9)
Using these relations leads to
7y e = (23 2o — I Nz 2n + 1) (10)

The eigenvalues can be then calculated from

N = Sy'z;'z54 (11)
= (Su'zo zenSu — 1) 7 (Sy" 2. zenSu + 1)
‘Which results in:

A=+ DO -D ' =0 D710+ 1) (12)
where
Ah = Si'z,! zen S (13)

. The solution of this eigenvalue problem is numerical stable.

This is the fundamental equation for determination of the
Floquet modes.

Because, according to the Floquet’s theorem, each peri-
odic structure can be described as a homogeneous waveg-
uide, for a finite pericdic structure with NV periods, eq.(4)
reads as (with NI'r = I'yp) :

cosh I'np —io sinh I'yp
—Ysinh I'vg cosh I'yp

Ep
Hp

Ec

fi, a4

The ports C and D are the input and output ports of the
finite periodic structure, To these ports another structures
or waveguides can be concatenated. To obtain scattering
parameters of whole concatenated structure, the impedance
must be transformed from the output to the input.
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With ﬁc,D = ZC,DITIC’D the impedance can be transform
throughout whole periodic structure by:

~ oy -1
where Zc=71 -7 (51 + ZD) z2 (15)

7 = 20/ tanh I'ey Zy = 20/ sinh I'ey

(16)

The relations between Floguet impedances (marked by a
tilde) and mode impedances (overlined) are given by

ZD = S}EITEZDTEISH {an

By using the above developed impedance transfer formula
we can calculate the input impedance of a concatenation
structure starting at the end. In case of the analyzed me-
ander line, to match the structure to 50 {2 impedance line,
a half of period with different dimensions was added at the
begin and at the end of the periodic structure. In this case, to
obtain the total input impedance, the output impedance was
transformed to the port D, then using (17) and (15) trans-
formed in Floquet’s domain throughout the whole periodic
structure to the port C and then again transformed to the
very input of the structure.

Having the input impedance we can easily calculate the
reflection coefficient. At the input of the structure we have
a feeding waveguide, We assume that this waveguide has a
characteristic impedance matrix Zg. For the magnetic field
at the input we then may write

Hiy, =2(Zin+ _Zﬁo)_1 Ein (18)

where E, is the vector of the propagating modes in for-
ward direction. If we assume that in the input section only
the fundamental mode with amplitude 1 is propagating in
the forward direction, then Eiqy is given by

Eing = [1,0,...0]" 19
With (18) and Esp, = Zi,H;,, we obtain
Ein - inn (?in + 70)—1Einf (20)

The vector I, contains the complex amplitude of the re-
flected fundamental and all higher modes. The scattering
coefficient column vecter 811 is now given by

S11 = Eg - Egy 2n

Repeating this calculation for the other modes in the input
waveguide we can construct the generalized scattering ma-
trix S;;. The reflection coefficient of the fundamental mode
is given in the above vector S;; as first component.

From the field at the input of the structure we can cal-
culate the field in the whole structure using the derived
impedance/admittance transfer equations and the forward
and backward propagating field parts. The algorithm is sta-
ble and high accurate. From the fields at the end all other
scattering parameters can be computed.

IT1. RESULTS

To validate the proposed algorithm, a meander line with
23 periods has been fabricated, measured and compared
with the calculated results. As a substrate RT/duroid
6010L.M microwave laminate was used, with e, = 10.2
and thickness A = 0.635mm. To match the input and out-
put impedances of the meander line to the 5042 line and to
minimize insertion loss, the width of the both ¢onnecting
lines wy and the first and last distance between the strips
d; were changed. The dimensions of the fabricated mean-
der line are (see Fig. 3) wy; = 0.6mm wy; = 04mm w =
0.4mm, d; = 0.6mm, d = 0.4mm, [ = 6.4 mm.

The structure was measured with a Hewlett Packard
8720D network analyzer. Fig. 4 shows the measured scat-
tering parameters against the results calculated with the pro-
posed algorithm. As seen, the measured and the calculated
results are in very good agreement. Because in the analysis,
a lossless structure was assumed, the transmission coeffi-
cient S3; can be computed from the relation:

%+ 8% =1 @D
However, to check the accuracy of the algorithm, we have
calcylated Sy, transforming the fields from the input to the
output. The difference between the theoretical (22) and nu-
merical results was approximately 10~4, what proofs the
high accuracy of the proposed approach.
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Fig. 4: Scattering parameters for the meander line.

Also the measured and calculated phase of the whole pe-
riodic structure are in very good agreement (Fig. 5).
Second analyzed structure is the magnetron resonator [3]
shown in Fig. 2. This resonator is designed to oper-
ate in the fundamental 7/2-mode around 38 GHz, with
N = 16 slots of depth 1.385mm, an anode radius of
2.25mm and the cathode radius of 1.3 mm. Fig. 6 shows
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Fig. 5: Phase for the meander line.

the resonant frequencies of the TE;¢ and TEj3p modes
( = 0,1,2,...N/2) with axial open-boundary conditions.
‘The results obtained by [3] and the MoL are in a very good
agreement.

140
0
f 120 ra \\
100 /
™
; X\
g % J.Y. Raguin et al.
L oooc MoL
604 ©
40 4
20| o/
0 N
0 50 100 150 200 250 300 350 400

Phase shift per slot [Deg.] —a= CCZKE010

Fig. 6: Dispersion diagram associated with TE;o and TEz0
modes.

IV. CONCLUSION

An efficient and numerical stable algorithm for the anal-
ysis of symmetrical periodic structures was proposed and
substantiated. To analyze the finite periodic structure, Flo-
quet modes for one period are determined and the formu-
las for concatenation of IV pericdic sections are given. An
alternative, numerically stable way for obtaining Floquet
modes, based on open- or short-circuit matrix parameter de-
scription is proposed,

To substantiate the proposed algorithm, two structures

were analyzed. The first one, a meander line was fabricated
and measured to compare calculated and measured results.
The second structure is a magnetron cavity which disper-
sion diagram was compared with the results published in
the literature.
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